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G. J Groen and R. C . Atkinson 
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Abstract 

This paper is concerned with showing how certain instructional 

problems can be reformulated as problems in the mathematical theory of 

optimization. A common instructional paradigm is outlined and a nota- 

tional system is proposed which allows the paradigm to be restated as a 

multi-stage decision process with an explicit mathematical learning model 

embedded within it. The notion of an optimal stimulus presentation 

strategy is introduced and some problems involved in determining such 

a strategy are discussed. A brief description of dynamic programming is 

used to illustrate how optimal strategies might be discovered in practical 

situations. 



Although the experimental work in the field of programmed instruction 

has been quite extensive, it has not yielded much in the way of unequivocal 

results. For example, Silberman (1962), in a summary of 80 studies dealing 

with experimental manipulations of instructional programs, found that 48 

failed to obtain a significant difference among treatment, comparisons. 

When significant differences were obtained, they seldom agreed with find- 

ings of other studies on the same problem. The equivocal nature of these 

results is symptomatic of a deeper problem that exists not only in the f'ield 

of programmed instruction but in other areas of educational research. 

An instructional program is usually devised in the hope that it op- 

timizes learning according to some suitable criterion. However, in the 

absence of a well-defined theory, grave difficulties exist in interpreting 

the results of experiments designed to evaluate the program. Usually the 

only hypothesis tested is that the program is better than programs with 

different characteristics. In the absence of a theoretical riotion of why 

the program tested should be optimal, it is almost impossible to formulate 

alternative hypotheses in the face of inconclusive or contradictory results. 

Another consequence of an atheoretical approach is that it is difficult to 

predict the magnitude of the difference between two experimental treatments. 

If the difference is small then it may not turn out to be significant when 

a statistical test is applied. However, as Lumsdaine (1963) has pointed 

out, lack of significance is often interpreted as negative evidence. 

What appears to be missing, then, is a theory that will pi,edict the 

conditions under which an instructional procedure optimizes 

theory of this type has  recently come to be called a t,heory 

learning A 

of instruction. - 
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It has been pointed out  by seve ra l  au thors  ( e - g . ,  articles by Gage, 1 ~ ~ 0 3  

and Hilgard,  1964)~ t h a t  one of the chief  problems i n  educa t iona l  r e sea rch  

has been a lack  of t h e o r i e s  of i n s t r u c t i o n .  For example, Brimer (1964) 

has  cha rac t e r i zed  a theory  of i n s t r u c t i o n  a s  a theory t h a t  s e t s  f o r t h  r u l e s  

concerning the  most e f f i c i e n t  way of achieving knowledge o r  skill; these  

r u l e s  should be de r ivab le  from a more gene ra l  view of l ea rn ing .  However, 

Bruner makes a sharp d i s t i n c t i o n  between a theory  of l ea rn ing  and a theory  

of i n s t r u c t i o n .  A theory of learn ing  i s  concerned wi th  descrf’bing l e a r n i n g ,  

A theory  of i n s t r u c t i o n  i s  concerned wi th  p r e s c r i b i n g  how l ea rn ing  can be 

improved. Among o the r  t h ings ,  i t  p r e s c r i b e s  t h e  most e f f e c t i v e  sequence 

i n  which t o  p re sen t  the  m a t e r i a l s  t o  be learned  and the  na ture  and pacing 

of re inforcement .  

While the  not ion  of a theory of i n s t r u c t i o n  i.s r e l a t i v e l y  new, opt,im- 

i z a t i o n  problems e x i s t  i n  many o ther  a reas  and have been ex tens ive ly  s tud ied  

i n  a mathematical  f a sh ion .  Within psychology, the  most prominent example 

i s  the  work of Cronbach and Gleser (1964) on the  problem of opt imal  t e s t  

s e l e c t i o n  f o r  personnel  dec is ions .  Outside psychology, op t imiza t ion  pr0.b- 

lems occupy an important  p lace  i n  a reas  a s  d ive r se  as  phys ics ,  e l e c t r i c a l  

engineer ing ,  economics and opera t ions  r e s e a r c h ,  Despi te  t he  f a c t  that ,  t he  

s p e c i f i c  problems vary  widely from one f i e l d  t o  another ,  s e v e r a l  mathemati- 

c a l  techniques have been developed t h a t  can be appl ied  t o  a broad v a r i e t y  

of op t imiza t ion  problems. 

The purpose of t h i s  paper i s  t o  i n d i c a t e  how one of these  techniques,  

dynamic programming, can be u t i l i z e d  i n  the  development of t h e o r i e s  of 

i n s t r u c t i o n .  Dynamic programming was developed by Bellman and h i s  asso-  

c i a t e s  (Bellman, 1957, 1961; Bellman and Dreyfus,  1962j f o r  t he  s o l u t i o n  
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of a class of problems called multi-stage decision processes. Broadly 

speaking, these are processes in which decisions are made sequentially, 

and decisions made early in the process affect decisions made subsequently. 

We will begin by formalizing the notion of a theory of instruction 

and indicating how it can be viewed as a multi-stage decision process. 

This formalization will allow us to giv? a precise definitlon of the opti- 

mization problem that arises. 

how dynamic programming techniques can be used to solve this problem. 

Although we wil.1 use some specific optimization models as illustrations, 

our main aim will be to outline some of the obstacles that stand in the 

way of the development oi' a quantitative theory of instruction and indicate 

how they might be overcome. 

Multi-Stage Instructional Models 

We will then consider in a general fashion 

The type of multi-stage process of greatest relevance to the purposes 

of this paper is the so-called discrete N-stage process. This process is 

concerned with the behavior of a system that zan be characterized at any 

given time as being in state w. This state may be univariat? but, is more 

generally multivariate and hence is often called a state vector (the two 

terms will be used interchangeably). The state of this system is determined 

by a set of decisions. In particular, every time a decision d (which may 

also be multivariate) is made, the state of the system is transformed. The 

new state is determined by both d and w and will be denoted by T(w,d). 

The process consists of N successive stages. At each of the first. N -1 

stages, a decision d is made. The last stage is a terminal stage in 

which no decision is made. The process can be viewed as proceeding in the 



following fashion: Assume that, at the beginning of the first stage t-.he 

is made. The result is dl system is in state w An initial decision 1" 

a new state w given by the relation: 2 

w = T(w2 d ) . 2 9 1  

d2 We are now in the second stage of the process, so a second decision 

is made resulting in a new state w determined by the relation 3 

w =T(w d ) .  3 2' 2 

The process continues in this way until finally: 

WN = T(WN-~>~N_~) 0 

If each choice of d determines a unique new state, T(w,d)9 then 

the process is deterministic. It i s  possible, however, that the new state 

is probabilistically related to the previous state. In this nondetermin- 

istic case, it is also necessary to specify for each stage i. a probability 

distribution Pr (wil ~ ~ - ~ , d ~ -  l) . 
In a deterministic process, each sequence of decisions dl, d2, 0 ~3 0 

and states wl, w2, ... , wN has associated with it a funct>ion tha-t. 
%-1 

has been termed the criterion or return function. This function can be 

viewed as defining the utility of the sequence of decisions. The optfmiza- 

tion groblem one must solve is to find a sequence of decisiom that maximizes 

their criterion function. The optimization problem for a nondeterministic 

process is similar except that the return function is some suitable type 

of expectation. 

In order to indicate how an instructional process can be considered 

as an N-stage decision process, a fairly general instructional paradigm 
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will be introduced, This paradigm is based on the type of process that 

is encountered in computer-based instruction, In instruction of this 

type, a computer is programmed to decide what will b? presented to the 

student next. The decision procedure, which is given in diagrammatic 

form in Fig. 1, is based on the past stimulus-response history of the 

student. It should be noted that this paradigm contains, as special 

cases, all other programmed instructional tezhniques currently in vogue. 

It may also correspond to the behavior of a teacher making use of' a well- 

defined decision procedure. 

It will be assumed that the objective of' the instructional procedure 

is to teach a set of concepts, and that the instructional system has 

available to it a set of stimulus materials regarding these concepts. For 

brevity of expression, a concept will be said to be presented whenever 

material relevant to the concept is presented, We can thus view the 

presentation of materials available to the system as a set of concepts S. 

We will define a stage of the process as being initiated when a 

decision is made regarding which concept is to be presented and terminated 

when the history file is updated with the outcome of the decision, In 

order to completely define the instructional system we need to define: 

1. The set S of all possible stimulus presentations. 

2 0  The set A of all possible responses that can be made by the 

student 

3. The set H of histories, An element of H need not be a complete 

history of the student's behavior, It may only be a summary. 

In the extreme case oL' a linear program i t  only contains a record 
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Start Instructional Session 

Initialize the student’s 
history for this session 

Determine, on the basis of the current history, 
1 ’  ( which stimulus is to be presented next 

\ I 

Present stimulus to student 

Record student’s response 

Update history by entering the 
last stimulus and response 

I 

w Has stage N of the process been reached? ) 

Terminate Instructional Session 

Figure 1. Flow diagram for an instructional system, 
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the stage the process is in. 

. .  4. A function 6 of H onto S. This defines the decision procedure 

used by the system to determine the stimulus presentation on the 

basis of the history. 

5. A function p of S X A X H onto H. Thus function updates the 

his tory. 

Thus, at the beginning of stage i the history can be viewed as being in 

stage hi. A decision is then made to present s = 6(hi) , a response a i i 

is made to s and the state of the system is updated to hi+l = v(si,ai,hi). i 

In a system such as this, the stimulus set S is generally predeter- 

For example, if mined by the objectives of one's instructional procedure. 

the objective is to teach a foreign language vocabulary, then S might 

consist of a set of words fran the language. The response set fi is, to 

a great extent, similarly predetermined, Although there may be some choice 

regarding the actual response mode utilized (e .go , multiple choice versus 
constructed response), this problem will not be considered here, 

objectives of the instructional procedl-ire also determine soms criterion 

of optimality. For example, in our vocabulary example thls might be the 

student's performance on a test given at the end of a learning session, 

The optimization problem that will be the main concern of' this paper is Lo 

find a suitable decision procedure for deciding which stimulus s to 

present at each stage of the process, given that, S, A 

criterion are specified in advance. Such a decision procedure is called 

a strategy. It is determined by the set of possible histories, H, the 

decision function 6, and the updating function p .  

The 

i 

and the optimality 
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For a p a r t i c u l a r  s tuden t ,  the s t imulus presented a t  a given s tage  and 

the  response the  s tudent  makes t o  t h a t  s t imulus can be viewed a s  the  ob- 

se rvable  outcome a f  t h a t  s tage  of the process .  

the sequence ( s  a s a 

can be viewed a s  the  outcome of the process ,  The s e t  of a l l  poss ib l e  out -  

comes of an i n s t r u c t i o n a l  procedure can be represented  a s  a t r e e  wi th  

branch p o i n t s  occurr ing a t  each s tage f o r  each poss ib l e  s t imulus presenta-  

t i o n  and each poss ib l e  response t o  a s t imulus .  An example of such a t r e e  

i s  given i n  F ig .  2 f o r  the f i r s t  two s t ages  of a process  wi th  s t imulus 

p re sen ta t ions ,  s ,  s ’  and two responses a ,  a ’ *  

For an N-stage process ,  

) ofoutcomes a t  each s tage  ’ ‘N-1’ %-1 1’ 1’ 2’ 2’ 

The most complete h i s t o r y  would conta in ,  a t  the  beginning of each 

s t a g e ,  a complete account of t he  outcome of t he  procedure up t o  t h a t  s t a g e ,  

a > .  Thus, hi would cons i s t  of some sequence (sl, al, s2, a2, 3 s j - l ’  i-1 
0 0 .  

I d e a l l y ,  one could then cons t ruc t  a dec is ion  func t ion  6 which s p e c i f i e d ,  

f o r  each poss ib l e  outcome, the appropriate  s t imulus p re sen ta t ion  

However, two problems emerge. The f i r s t  i s  t h a t  the  number of outcomes 

inc reases  r a p i d l y  a s  a func t ion  of the  number of s t ages .  For example, a t  

t h e  10 th  s tage  a process  such a s  t h a t  ou t l i ned  i n  F ig .  2 ,  we would have 

41° outcomes. The s p e c i f i c a t i o n  of a unique dec is ion  f o r  each outcome 

would c l e a r l y  be a p r o h i b i t i v e l y  lengthy procedure.  A s  a r e s u l t ,  any 

p r a c t i c a l  procedure must c l a s s i f y  the  poss ib l e  outcomes i n  such a way 

a s  t o  reduce t h e  s i z e  of t he  h i s t o r y  space,  Apart  from the  problem of the  

l a r g e  number of poss ib l e  outcomes, one i s  a l s o  faced wi th  the problem 

t h a t  many procedures do not  s t o r e  a s  much information a s  o t h e r s o  For 

example, i n  a l i n e a r  program i n  which a l l .  s tudens a re  run i n  locks tep ,  i t  

si” 
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S t.age 
1 

F i g u r e  2 .  Tree diagram f o r  the  f i r s t  two s t a g e s  of a 

proce'ss with two s t i m i i l i  s and s ' ,  and 

two responses  a and a ' .  l l i e  doLied lines 

enclose t h e  sl lbtrec generated. by a poss ib l e  

Y csponse-svns i t ive  st L'ate,,j'. 
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is not possible to make use of information regardirlg the student's responses, 

In general, instructional systems may be classified into two types:. those 

that make use of the student's response history in their stage-by-stage 

decisions and those that do not. The result,ing strategies may be termed 

response insensitive and response sensitive, A response insensitive 

strategy can be specified by a sequence of stimulus presentations 

(sl, s2, ..., s ~ - ~ ) .  

a subtree of the tree of possible outcomes. An example is given in Fig, 

2. There are two chief reasons for making this distinction. The first 

is that response insensitive strategies are less complicated to derfve. 

The second is that response insensitive strategies can be completely 

specified in advance and so do not recpire a system capakle of branching 

during an actual instructional session, 

A response sensitive strategy can be represented by 

While this broad classification will be xseful in the ensding discus- 

sion, it is important to note that several types of history space are 

possible within each class. Even if the physical constraints of the system 

are such that only response insensitive strategies can be considered, it 

is possible to define many ways of "counting" stimulus presentations, The 

most obvious way is to define the history at stage i as the number of 

times each stimulus has been presented. A more complicated procedure 

(which might be important in cases where stimuli were easily forgotten) 

would be to also count for each stimulus the number of other items that 

had been presented since its most recent presentation, 

The discussion up to this point has been concerned mainl;y wlth the 

canonical representation of an instructional system and a deliberate 

effort has been made to avoid theoretical assumptions, While +,his leads 
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t o  Some i n s i g h t  i n t o  the na tu re  of t he  opt imizat ion problem involved, the 

inuu-stage process cannot be s u f f i c i e n t l y  w e l l  def ined t o  y i e l d  a s o l u t i o n  

t o  the  opt imizat ion problem without imposing theo re t , i ca l  assumptions, It 

w i l l  be r e c a l l e d  t h a t ,  i n  order t o  de f ine  a mul t i - s t age  process ,  i t  i s  

= T(wi,di) given the  s t a t e  i t 1  necessary t o  spec i fy  a t ransformation w 

and dec i s ion  a t  s tage i. I n  ordcr t o  optimize tht_ PI-ocess i t  1s a l s o  

necessary t o  be ab le  t o  s t a t e  a t  each s t age  the e f f e c t  of a dec i s ion  upon 

the  c r i t e r i o n  func t ion .  The purpose of most i n s t r u c t i o n a l  systems i s  t o  

maximize each s t u d e n t ' s  per€ormanct on some a p t i t u d e  t h a t  can be operat ion-  

a l l y  def ined i n  terms of a t e s t  t h a t  i s  administered a t  t he  end of the  pro- 

cedure.  A s  a r e s u l t ,  the s implest  c r i t e r i o n  f 'unction t o  use i s  one which 

depends only on the f i n a l  s t a t e  of' the system. 

c a l l e d  the terminal  r e t u r n  func t ion  and denoted 

s t a t e d  a s  a funct ion of the f i n a l  s t a t e ,  t h i s  f i n a l  s t a t e  i s  dependent 

' l 'h ls  f unc t ion  w i l l  be 

cp(w,). While t h i s  can be 

upon the sequence of dec i s ions  t h a t  have gone b e f o r e ,  

outcomes t h a t  r e s u l t  i n  t h e  same f i n a l  s ta t , e  y i e l d  i d e n t i c a l  values  of 

However, any two 

d w , )  " 

The main purpose of t he  t ransformation T i s  t o  provide a means of' 

p r e d i c t i n g  the f i n a l  s t a t e .  If 'I i s  d e t e n n i n i s t i c  then the sequence of 

optimum decis ions could be determined by enumerating i n  a t r e e  diagram a l l  

p o s s i b l e  outcomes and computing cpiw,) f o r  each p a t h ,  A p a t h  t h a t  maxi- 

mized cp(w,) would y i e l d  a sequence of d e c i s l o n s  corresponding t o  appro- 

p r i a t e  nodes of the t r e e .  I f  T were nonde te rmin i s t i c  then a s t r a t e g y  CJ 

would y i e l d  a sub t r ee  s i m i l a r  t o  t h a t  f o r  a r e s p o n s e - s e n s i t i v e  s t r a t e g y .  

Each sub t r ee  would de f ine  a p r o b a b l l l t y  distribution over t h e  w and thus  
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an expected te rmina l  r e tu rn :  

\T- 

could be computed f o r  each s t r a t e g y  u .  I n  e i t h e r  case,  t h i s  process  of 

simple enumeration of the  poss ib le  branches of a t r e e  i s  impossible i n  any 

p r a c t i c a l  s i t u a t i o n  s ince  too many a l t e r n a t i v e  pa ths  e x i s t ,  even f o r  N 

reasonably small ,  The problem of developing a f e a s i b l e  computat,ional 

procedure w i l l  be discussed i n  the next s ec t ion .  'The problem of immediate 

concern i s  the  most s a t i s f a c t o r y  way of dcf in ing  the s t a t e  space w and 

the  t ransformations T(di7wi) e 

A t  f i r s t  s i g h t ,  i t  would seem t h a t  w could be def ined as the  i 

h i s t o r y  a t  s tage  i and T ( w .  ,di) a s  the  h i s t o r y  updat,ing r u l e ,  However, 
1 

while t h i s  might be f e a s i b l e  i n  cases  where t h e  h i s t o r y  space i s  e i t h e r  

s p e c i f i e d  i n  advance or subjec t  t o  major c o n s t r a i n t s ,  i t  has the  severe 

disadvantage t h a t  i t  n e c e s s i t a t e s  an ad hoc choice of h i s t o r i e s  and, -- 
without  the add i t ion  of t h e o r e t i c a l  assumptions, it, i s  impossible t o  com- 

pare  t h e  e f f ec t iveness  of d i f f e r e n t  h i s t o r i e s .  Even i f  the  h i s t o r y  space 

i s  predetermined, such a s  might be the case i n  a simple l i n e a r  program 

where a l l  a h i s t o r y  can do i s  "count" the occurrences of each st.fmu1u.s 

i t em,  it i s  necessary t o  make some t h e o r e t i c a l  assumption regarding the  

p r e c i s e  form of cp(w,). 

One way t o  avoid problems such a s  t h i s  i s  t o  introduce theo re t , i ca l  

assumptions regarding the learning process e x p l i c i t l y  i n  the form of a 

mathematical  model. I n  the context of an N-stage process  a learn ing  

model c o n s i s t s  o f :  1) a s e t  of l earn ing  s t a t e s  Y ;  2 )  a 'us t ia l ly  



nondeterminis t ic  response m l e  which gives  (€o r  each s t a t e  of l ea rn ing )  

the p r o b a b i l i t y  of a .%or rcc t  -response t o  a &ven st imulus;  and 3 )  an up- 

d a t i n g  r u l e  which p r i v i d c s  a means of determining the new l ea rn ing  s t a t e  

(or d i s t r i b u t i o n  of s t a t e c )  t h a t  r e s u l t s  from the  p r e s e n t a t i o n  of a 

s t imulus,  the response the s tudent  makes, and the  reinforcement he r ece ives .  

A t  the  beginning of stage i of the p rocess ,  the s t u d e n t ' s  sLate i s  de- 

noted by yi. Af t e r  s t imulus si i s  p re sen ted ,  t he  s tuden t  makes a 

response ai t he  p r o b a b i l i t y  of which i s  determined by si and y The 

l ea rn ing  s t a t e  of t h e  s tudent  then changes t o  y = T(yi,si) .  Mocicls of 

t h i s  type have been found t o  provide s a t i s f a c t o r y  d e s c r i p t i o n s  f o r  a 

v a r i e t y  of learning phenomena i n  a r e a s  such a s  pa i r ed -as soc ia t e  l ea rn ing  

and concept formation. 

empi r i ca l  phenomena are t o  be found i n  Atkir,son, Bower, and Crothers  (1965), 

Atkinson and Estes (1.9 ) )  , and Sternbe?,  (1963) 

i ' 

i+l 

Deta i l ed  accounts of t hese  models and t h e i r  f i t  t o  

I n  the  example e€ t h e  l ea rn ing  of a l i s t  of vocabulary i tems,  the 

two s imples t  models t h a t  might provide :in adequate d e s c r i p t i o n  of the  

s t u d e n t ' s  learning process  a r e  the single-operator linear model (Bush and 

Sternberg,  1959) and t h e  one-element model (Bower, 1961; 

In  the s ingle-operator  l i n e a r  model, t h e  s e t  Y i s  the  closed u n i t  i n t e r v a l  

[0 ,  11 a 

p r o b a b i l i t i e s  can be est imated from group data ,  they a r e  unobservable when 

i n d i v i d u a l  sub jec t s  a r e  considered,  I f ,  f o r  a p a r t i c u l a r  s t imulus j ,  

qi ( J )  i s  t h e  p r o b a b i l i t y  of an e r r o r  a t  t he  s t a r t  01' s t a g e  i and t h a t  

i L c i  i s  presenied,  then the new sLate (i .e ~, tlie rcsponce p r o b a b i l i t y )  i s  

Es t e s ,  1960). 

The s t a t e s  a re  values  of res,)onse p r o b a b i l i t i e s .  Although these  

given by 
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I 

I 

If 91 ' J )  i s  the  e r r o r  p r o b a b i l i t y  a t  the beginning o f  the f i r s t  s t a g e ,  

then i t  i s  e a s i l y  shown t h a t  

where n ( j )  

forced p r i o r  t o  s t age  i ,  The response r u l e  i s  simply t h a t  i f  a sub jec t  

with r e spec t  t o  a s t i m u l u s  and t h a t  s t i m u l u s  i s  presented i s  i n  s t a t e  

then he makes an e r r o r  w i t h  p r o b a b i l i t y  q This  model has  two important 

p r o p e r t i e s ,  

t he  s t a t e  t ransformation t h a t  OCCUY'S a s  t he  r e s u l t  of an i tem p r e s e n t a t i o n  

i s  d e t e r m i n i s t i c .  

s i n c e  the sane tr.an:;l 'o~matlon i s  appl ied to t h e  s t a t e  .lie+diier a c o r r e c t  o r  

i n c o r r e c t  i.esponse 0 c r : ~ x . s .  

d i c t  t h e  s t a t e  i s  the  number of times an i tem has been p r e s e n t e d ,  

I n  the  one-element model, an i tem can be i n  one of two s t a t e s  a 

i s  the number of times the  i tem has been presentec? and r e i n -  i 

q i  

i *  

The f i r s t  i s  t h a t ,  although the response r f i l e  i s  qonde te rmin i s t i c ,  

The sec'ond i s  t l i n t  tlie inoiiel i s  i'espon-e in sen . ; i t i ve  

The only information chat can be :ised t o  pre- 

- 
l ea rned  s t a t e  L and un unlearned s t a t e  L. I f  an i tem i s  i n  s t a t e  L 

it i s  always responded t o  c o r r e c t l y  I f  i t  is in s t a t e  i t  is responded 

t o  c o r r e c t l y  with p r o b a b i l i t y  g, The r u l e  g iv ing  the  s t a i e  transf'ormation 

i s  nonde te rmin i s t i c .  If an i tem i s  i n  s t a t e  L a t  the beginning of a 

s t a g e  and i s  p re sen ted ,  then i t  changes i t s  s t a t e  t o  L with p r o b a b i l i t y  

c (where c remains constant  throughout the p rocedure ) .  Unlike the  

l i n e a r  model, t h e  one-element model i s  response s e n s i t i v e ,  I f  an e r r o r  

i s  made i n  response t o  an i tem then t h a t  i tem was in s t a t e  L a t  t h e  time 

t h a t  t h e  response was made. To see how t h i s  f a c t  i n f l u e n c e s  the rzsponse 

p r o b a b i l i t y  i t  i s  convenient t o  introduce a random v a r i a b l e  

- 

- 

Xn i n  the 



fol lowing way: 

Then 

but 

7; 'YI 
1, if an e r r o r  ocJtdrs on the n p re sen ta t ion  of i tem j 

0 ,  i f  a S L I C Z ~ S ~  o : c ~ r s  on the  n p rc - sen ta t ion  of item j, 
n t h  

I n  c o n t r a s t ,  f o r  the single-operacor l i n e a r  modcl 

Although these two models cannot be expected t o  pro.vi.de the  same optimiza- 

t i o n  scheme i n  gene ra l ,  t hey  a r e  equivalentJ when only response i n s e n s i t i v e  

straLel;ies are  considered.  'This i s  dill t o  t he  f a c t  that,, i f  a i s  set 

( j )  t o  1 - g then identical expressions f o r  1 equal  10 l. - c and q 

Pr(XI(lj) = 1) r e s i i i t  f o r  both modyLs. 

With the  in t roduc t ion  of models such a s  +hz;e, the s t a t e  space W 

and tkl;e t ransformation T Lati be definpd 1'1 t,tlrrris of' some " l ea rn ing  s t a t e "  

of the s luden t .  For example, i n  t h e  case of t h e  l i n e a r  model and a l i s t ,  

of m stimulus i tems, we can d e f i n e  t,he s t a l e  of the student a t  s t age  i 

as  the m-tuple  

(1) (2) (m) ) q = (q  ,Y ; - - 4 q  

where q (j) denotes the current  p r o b a b i l i t y  of making an e r r o r  t o  i tem 

s") and def ine T ( q , s j )  a s  t h ?  vec to r  obtained by r ep lac ing  q ( j )  with 

a q ( j ) *  'l'hiL no ta t ion  1s i l l u s t r a t e d  in F i g ,  j o  If the behavioral  Optimi- 

1.6 
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a f t e r  s t a g r  N of the process ,  then 'die r e t u r n  func t ion  would be t h e  

expec ta t ion  01' the t e s t  score, i . e e ,  

where 1 - qN (j) i s  the p robab i l i t y -  of a c o r r e c t  response a t  t he  end of t h e  

i n s t r u c t i o n a l  process .  It i s  no t  necessary,  however, t h a t  W be t h e  a c t u a l  

s t a t e  space of the model. It  may, i n s t e a d ,  be more convenient t o  de f ine  

w as some funct ion of the parameters of t he  model. For example, if t h e  

process of learning a l i s t  of simple items can be descr ibed by a one-element 

model, then wi can be def ined a s  the  n- tuple  whose jth element i s  e i t h e r  

L o r  f;. However, i f  one i s  i n t e r e s t e d  i n  some c r i t e r i o n  t h a t  can be ex- 

i 

pressed i n  terms of p r o b a b i l i t i e s  of the i tems being i n  s t a t e  L,  then i t  

may be computationally more convenient t o  consider  wi a s  an n- tuple  

whose jth element i s  t h e  p r o b a b i l i t y  t h a t  s t imulus ~(j) is  i n  s t a t e  L a t  the 

beginning of s tage i .  

If we view the  s t a t e s  a s  some func t ion  of the  parameters of a l e a r n i n g  

model. then the h i s t o r y  h i  can be viewed a s  a s u i t a b l e  e s t ima te  of w. 1 

It i s  c l e a r  from our exariiples t h a t  a l ea rn ing  model can impose a severe 

c o n s t r a i n t  upon the h i s t o r y  space i n  the  sense t h a t  information regarding 

observable outcomes i s  rendered redundant.  For example, if 

known on - a p r i o r i  grounds ( f o r  each j ) ,  then the  l i n e a r  model r ende r s  the 

(j> is 
91 

e n t i r e  response h i s t o r y  redundant,  This i s  because t h e  response p r o b a b i l i t y  

of each i tem i s  completely determined by t h e  number of t imes it  has  been 

p resen ted .  With the one-element model, the n a t u r e  of t he  c o n s t r a i n t  on 

the  h i s t o r y  i s  no t  immediately c l e a r .  I n  g e n e r a l ,  t h e  problem of deciding 



on an appropr ia te  h i s t o r y ,  

observable s t a t i s t i c  t h a t  provides a good es t imate  of a parameter.  

hi, i s  similar t o  the  problem of f ind ing  an 

The 

h i s  t o r y  hi may be regarded a s  an es t imate  of t h e  s t a t e  w A d e s i r a b l e  

proper ty  f o r  such a s t a t i s t i c  would be f o r  it t o  summarize a l l  information 

i" 

concerning the s t a t e  so t h a t  no other  h i s t o r y  would provide add i t iona l  

information. A h i s t o r y  wi th  t h i s  proper ty  can be c a l l e d  a S u f f i c i e n t  

h i s t o r y .  

In  the  theory of s t a t i s t i c a l  in ference ,  a s t a t i s t i c  wi th  an atlalogous 

proper ty  i s  c a l l e d  a s u f f i c i e n t  s t a t i s t i c .  Since wi i s  a func t ion  of 

the parameters of the  model it would seem reasonable  t o  expect t h a t ,  i f  

a s u f f i c i e n t  s t a t i s t i c  e x i s t s ,  f o r  these parameters,  then a s u f f i c i e n t  

h i s t o r y  would be some func t ion  of the  s u f f i c i e n t  s t a t i s t i c .  For a gene ra l  

d i scuss ion  of the  r o l e  of s u f f i c i e n t  s t a t i s t i c s  i n  reducingthe number of 

pa ths  t h a t  must be considered i n  t r e e s  r e s u l t i n g  from processes  s imi l a r  

t o  those considered he re ,  the reader  i s  r e f e r r e d  t o  Ra i f f a  and S c h l a i f f e r  

(1961). 

Optimizat ion Techniques 

Up t o  now, t h e  only technique we have considered t h a t  enables  us t o  

f i n d  an opt imal  s t r a t e g y  i s  t o  enumerate every pa th  of the t r e e  generated 

by the  N-stage process .  Although the  systematic  use of l ea rn ing  models 

can serve t o  reduce the  number of pa ths  t h a t  must be considered, much too 

l a r g e  a number of pa ths  s t i l l  remains i n  most problems where a l a rge  number 

of d i f f e r e n t  s t i m u l i  a r e  used. The main success with a d i r e c t  approach 

has  been i n  the  case of response i n s e n s i t i v e  s t r a t e g i e s  (Suppes, 1964; 

Crothers  , 1-96?, 1966.; Dear, 1964) . I n  these  cases ,  e i t h e r  the  number of 





decision,and 2) whatever subsequent decisions are made. 

the return function cp(wN) possesses this property, Another type of return 

It is clear that 

function that possesses this property is one of the form: 

A return function of this latter form may be important when cost as well 

as final test performance is an important criterion in designing the system. 

For example, in a computer-based system, g(wi,di) 

using the computer for the amount of time required to make decision 

and present the appropriate stimulus. 

from a function of this form are somewhat more complicated, we will limit 

our attention to return functions of the form However, it should 

might be the cost of 

di, 

Since the expressions resulting 

cp(w,). 

be borne in mind that essentially the same basic procedures can 'be used 

with the more complicated return function. 

If a deterministic decision process has this Markovian property then 

an optimal strategy will have the property expressed by Bellman in his 

optimality principle : 

are, the remaining decisions constitute an optimal policy with regard to 

the state resulting --- from the first decision (Bellman, 1961, p. 57). 

see how this principle can be utilized, let 

whatever the initial --- state and the initial decision - 

- - 
To -- 

fN(w) denote the return from 

an N-stage process with initial statme w 

throughout, and let us assume that T is deterministic and W fs discrete. 

if an optimal strategy is used 

Since the process is deterministic, the final state is completely determined 

by the initial state w and the sequence of decision d19  '2, "'"ydN-l 

(it should be recalled that no decision takes Blace during the last stage), 

If DN denotes an arbitrary sequence of N -  1 successive decisions (D 1 
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being the empty s e t )  then t h e  f i n s 1  s t a t e  r e s u l t i n g  from w and DN can 

be w r i t t e n  as w'(D,,w) 

sequence DN which maximizes ip[w'(DN3w)]* I f  such a sequence e x i s t s ,  

then 

The problem t h a t  must be soived i s  t o  f i n d  the  

f l V ( w )  --- max r $ w ' ( D  ,w)] 
n N 

a r b i t r a r y  N ,  i t  i s  e a s i l y s h a m  ' h a 1  f'ol- N = 1 

A s  a r e s u l t ,  i f  a r e l a t i o n  can be four,d t h a t  connects Pi(w) with 

( w )  f o r  each i - < N then fN(w) can 'be cval_uated r e c u r s i v e l y  by fi-l 

eva lua t ing  fi(w) f o r  each i, Suppose-. tha t , ,  i n  an i - s t a g e  process ,  an 

i n i t i a l  decis ion d i s  made, Then w is transformed m t o  a new s t a t e ,  

T(w,d), and the dec i s ions  that.  remain can be viewed a s  forming an 

( i - 1 ) - s t a g e  process wit,h i n i t i a l  s t a t e  T ( w , d )  The o p t i m a l i t y  p r i n c i p l e  

implies  that the maximum r 3 t u r n  from the l a s t  i - 1  s t a g e s  w i l l  be 

f ' i - l [ T ( w , d )  1 .  Moreover ~f D (d,c12, ,d ) and 2. - ( d ? , d > , " "  9 i I-I 1 - 1. J 

Suppose t h a t  Di- l  i s  t he  optimal s t r a t e g y  f o r  t he  i- 1 s t a g e  p rocess .  

Then the right-hand s i d e  of t h i s  equat ion i s  equal  t o  

op t ima l  choice of d i s  one which msximiies t h i s  f u n c t i o n ,  A s  a r e s u l t ,  

f i- l[T(w,d)l .  An 

the  fol lowing bas i c  recurrence r ? l a t i o n  holds: 

2 < n < N (11) - -  
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I 

Equations 11 and 12 r e l a t e  the optfmal r e t u r n  from an n-stage process  

with the opt imal  r e t u r n  from a process with only n - 1  s t a g e s .  Formally, 

n may be viewed a s  indexing a seqilence of propesses ,  All processes  a r e  

i d e n t i c a l  except i n  the number of s t a g e s  they posses s ,  Thus, t he  s o l u t i o n  

of these equations provides  us  with a maximum r e t u r n  func t ion  

each process  and ( a l s o  f o r  each process) an i n i t i a l  dec i s ion  d which 

ensures  t h a t  t h i s  maximum w i l l  be a t t a i n e d  i f  optLmal dec i s ions  a r e  made 

t h e r e a f t e r .  It i s  important t o  note t h a t  both d and f (w) a r e  f lmc t ions  

of w and t h a t  w should, Ln gene ra l ,  range over a l l  values  i n  the s t a t e  

space W .  I n  p a r t i c u l a r ,  the i n i t i a l  s t a t e  arld i n i t i a l  dec i s ion  of a 

t y p i c a l  member of t he  sequence of processes  w e  a r e  consider ing should n o t  

be confused with the i n i t i a l  s t a t e  and i n i t i a l  dec i s ions  of the N-stage 

process  we a r e  t r y i n g  t o  optimize.  I n  f a c t ,  t h e  i n i t i a l  d e c i s i o n  of the 

2-s tage process  corresponds t o  the l a s t  dec i s ion  

process;  t he  i n i t i a l  dec i s ion  of t he  3-s tage process  corresponds t o  t h e  

nex t  t o  the  l a s t  dec i s ion  

fn(w) f o r  

n 

dN-l of the N-stage 

dN-2 of the N-stage process  and so  on, 

The l i n e a r  model of E q .  2 >  w i t h  the s t a z e  space def ined Eul E q .  7 

provides  an example of a d e t e r m i n i s t i c  process .  Th? use of Eqs, 11 and 12 

t o  f i n d  an optimal s t r a t e g y  f o r  t he  s p e c i a l  case of a 4-stage process with 

two items i s  i l l u s t r a t e d  i n  Table 1, 

The s t a t e  a t  

a t  the end of t he  

t o  c o r r e c t l y  with 

t h e  beginning of s t age  i i s  def ined by the vec to r  

optimizati.on c r i t e r i o n  is t he  score on a t e s t  administered 

i n s t r u c t i o n a l  p rocess ,  Since isem j w i l l  be responded 

p r o b a b i l i t y  1- q, ( 2 )  , t he  t e rmina l  r e t u r n  func t ion  f o r  

a n  N-stage process  i s  2 - (qN (’) + qi2’)o The calcuLation is began by 
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Table 1 

Calculat ion of Optimal S t r a t e g y  f o r  Example of 

Figure 3 Using Dynamic Programming 

Number of I n i t i a l  I n i t i a l  Next F i n a l  Optimal 
Stages i n  S t a t e  w Decision d S t a t e  Return of Decision 
Process N T ( w , d )  Optima 1 

N - 1  Stage 
Process 

f N - l  [T(w,d)l 

1 ( .08, .90) 1,02 

(-15, .45) 1.40 
( . 3 0 ,  .a 1-48 

(.60, A) 1.29 

2 \ . 15 ,  .YO) 1 908 3 Q 90) 1*02 2 

( - 3 0 ,  "45) 1 ( I 15, .45) 1.40 2 

(.60, "22) 1 (-30, "22) 1.48 1 

3 (.30, .90> 1 (.15, .9O) 1.40 2 

2 (-15, "45) 1'40 

2 ( "30,.22) 1.48 

2 (.60, "11) 1.29 

2 ( .3O, .45) 1.L8 
(.60, *45) 1 30, 45) LU48 1 o r  2 

2 ( .60, *22 j  1.48 
4 (.Go, -90) 1 ( .30, "90) 1-48 1 o r  2 

2 45) 1.48 

Optimal S t , r a t eg ie s  

Stage 1 Si?,.- 2 Stage 3 

I, Item 1 Item 2 Item 2 

2 ,  Item 2 Item 1 Item 2 

3 &  Item 2 I t i m  2 I tem I 
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viewing the  f o u r t h  s t age  a s  a 1-stage process  and ob ta in ing  the r e t u r n  €or 

each poss ib l e  s t a t e  by means of Eq, 120  The poss ib l e  s t a t e s  a t  t h i s  f o u r t h  

s t age  a r e  obtained from F ig .  3. 

viewed a s  a 2-stage process  and Eq. 11 i s  used t o  determine +,he r e t u n  

t h a t  r e s u l t s  from p resen t ing  each i tem f o r  every p o s s i b l e  s t a t e  t h a t  can 

occur i n  s t age  3, t he  p rev ious ly  computed r e s u l t  €or a l - s t a g e  process  

being used t o  complete t h e  computations. 

maximum r e t u r n  r e p r e s e n t s  the optimal dec l s ion  t o  make a t  s t age  3. The 

3-stage process beginning a t  s tage 2 i s  analj-zed IC t h e  same way, u s ing  

the  p rev ious ly  computed r e s u l t s  f o r  t h e  l a s t  two s t a g e s .  The r?s-cllt i s  

an optimal dec i s ion  a t  s t age  2 f o r  each poss ik l e  s t a t e ,  asszuning opt imal  

dec i s ions  t h e r e a f t e r .  F i n a l l y ,  t he  procedclre i s  repeated f o r  the &-stage 

process  beginning a t  s t age  1. The optimal s t r a t e g i e s  of j t an  p r e s e n t a t i o n  

t h a t  r e s u l t  from t h i s  procedure a r e  given a t  t he  bottom of Table 1, 

The t h i r d  and fo-xrkh s t ages  a r e  then 

For each s t a t e ,  the i tem with the  

With a nondeterminis t ic  process,  the s i tc la t fon is considerably more 

complicated.  The t ransformation T i s  some type of p r o b a b i l i t y  d i s t r i b u -  

t i o n  and the f i n a l  r e t u r n  i s  a mathematical expec ta t ion .  While arguments 

based on t h e  o p t i m a l i t y  p r i n c i p l e  allow one t o  o b t a i n  r ecu r s ive  equat ions 

s i m i l a r  i n  form t o  (11) and (12) ? both t h e  arguments used t o  o b t a i n  the  

equat ions and the  methods used t o  solve them can con ta in  many s u b t l e  f e a t u r e s ,  

A gene ra l  review of the problems encountered i n  t h i s  tyEe of  process  i s  

given by Bellman (1962) and some methods of s o l u t i o n  a r e  discussed by Bell- 

man and Dreyfus (1962). 

Markov process  wi th  observable s t a t e s ,  Howard (1960) has der ived a s e t  of' 

equa t ions  toge the r  with an i t e r a t i v e  technique of s o l u t i o n  which has  q u i t e  

For the case where t h e  t ransformation d e f i n e s  a 



g e n e r a l  a p p l i c a b i l i t y ,  However, i n  the case of I n s t r u c t i o n a l  processes ,  

i t  has so f a r  tended t o  be the case t h a t  e i t h e r  t he  l ea rn ing  model used 

has  unobservable s t a t e s  or  t h a t  the process  can be reddced t o  a more determin- 

i s t i c  one (as  i s  t he  case with the l i n 5 a r  model d i sc J s sed  i n  the example 

above) 

A response- insensi t ive process  can oft,?n be viewed a s  a d e t e r m i n i s t i c  

process .  T h i s i s  not,, 4n gene ra l ,  poss ib l e  with a r e sponse - sens i t i ve  p rocess '  

The ogly process of t h i s  type t h a t  has  been extsns;vtly analyzed i s  t h a t  

i n  which a l i s t  of stimulus-response i tems i s  t o  be learned,  t,he r e t u r n  

func t ion  i s  the score on the  t e s t  administered a t  t he  end of the p rocess ,  

and the  l ea rn ing  of each i tem i s  assumed t o  occur independently and obey 

the  assumptions of the one-element model, Ai l  atLempt t o  solve t h i s  problem 

by means of a d i r e c t  extension of Howard's t s chn iqJes  t o  Markov processes  

w i t h  unobservable s t a t e s  has been made 'cy Matheson (1964)" However, t h i s  

approach appears t o  lead t o  somewhat cumbersome equat ions t h a t  a r e  impossible 

t o  solve i n  any n o n - t r i v i a l  cas?.  A more promising appmach h a s  bepn de- 

v i sed  by Karush and Dear (19663 " A s  Lr, o<ir example of the l i n e a r  model, the 

s t a t e s  of the process  a r e  def ined i n  terms of the  c i r r e r i t  p r o b a b i l i t y  

t h a t  an i tem is i n  t he  c o n d i t i o m d  s t a t e  and a s imi l a r  (t,hough somewhat 

more g e n e r a l )  r e t u r n  func t ion  i s  assimed. 

t u r n  from an (N-$-stage process  t o  the r e t i l rn  from an N-stage p rocess  i s  

then de r ived .  The main complication i n  d e r i v i n g  t h i s  expression r e s u l t s  

from the  f a c t  t h a t  the outcome t r e e  i s  more complicated,  t he  s o k j e c t ' s  

responses having t o  be e x p l i c i t l y  considerzd,  Karush and Dear proceed t o  

de r ive  c e r t a i n  p r o p e r t i e s  of the re tur f1  func t ion  arid prove m a t  i n  an 

An expres s ion  r e l a t i n g  the  r e -  
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N - t r i a l  experiment2 wi th  i tems s 

a r b i t r a r y  i n i t i a l  condi t ioning p r o b a b i l i t i e s  (.A (1’ ,A‘?) ? J  a 0 -  

s t r a t e g y  i s  given by present ing  a t  any t r i a l  an i tem f o r  which the cu r ren t  

condi t ioning p r o b a b i l i t y  i s  l e a s t .  

p r o b a b i l i t i e s  ~ ( j )  can be assumed t o  be zero.  

s u f f i c i e n t  h i s t o r y  can be defined i n  terms of a counting procesISD 

opt imal  s t r a t e g y  i s  i n i t i a t e d  by present ing  the m i tems any order  on 

s(2?9+a-9s(m’ (where N 2 m) aqd 

an optimal  

I n  most app l i ca t ions  the  i n i t i a l  

I n  t h i s  case,  an observable 

An 

the  f i r s t  

on ly  i f  i t  conforms t o  the  following r u l e  : 

m t r i a l s  and a cont inuat ion of this s t r a t e g y  fs o p t h l  i f  and 

1. 

2.  Present  an i tem a t  a given t r i a l  i f  and only if i t s  count i s  

l e a s t  among the counts f o r  a l l  i tems a t  the beginning of t he  

t r i a l .  

For every i tem s e t  t h e  count a t  0 a t  the  beginning of t r i a l  m + l .  

3. Following a t r i a l ,  increase  the  count f o r  the presented i tem 

by 1 i f  the response was co r rec t  bu t  s e t  i t  a t  0 if the response 

was i n c o r r e c t .  

General  Discussion 

I n  t h i s  paper we have attempted t o  achieve two main g o a l s ,  The f irst  

has  been t o  provide an e x p l i c i t  statement of t he  problems of opt imal  

i n s t r u c t i o n  i n  t h e  framework of mul t i - s tage  dec i s ion  theory.  

reason  f o r  in t roducing  a somewhat e l abora t e  n o t a t i o n a l  system is t he  need 

f o r  a c l e a r  d i s t i n c t i o n  between the  opt imiza t ion  problem, the  l ea rn ing  

process  t h a t  the  s tudent  i s  assumed t o  fol low,  and the  method of solving 

t h e  opt imiza t ion  problem. 

dynamic programming as an example, how opt imiza t ion  problems can be solved 

O u r  main 

The second goa l  has  been t o  i n d i c a t e ,  us ing  



in practice. Again, it shodd be emphasized that dynamic programming is 

ncjt the only technique that can be used to solve optimization problems. 

Many response-insensitive problems are solvable by more simple, though 

highly specific, techniques However, dynamic programmmg is the only 

technique that has so far proved ciseful in Lkie derivation of response- 

sensitive strategies. In describing dynamic programming ar, attempt has 

been made to emphasize two basic features: the oplimality principle, and 

the backward-induction procedure by means of which an optimal strategy is 

obtained by starting, in effect, at the last stage, It should be noted 

that these can be used independently. For example, it is possible to com- 

bine the optimality principle with a forward induction procedure which 

starts at the first atage of the process, 

In any attempt to apply an optimization theory in practice one must 

ask the question; how can it be tested experimentally? In principle, it 

is easy to formulate such an experiment. A number of strategies are 

compared--some theoretically optimal, others theoretically subopttimal, 

A test is administered at the end of' t h e  p r o ~ e s s  that  is designed to be 

some observable i'unction of the final l*eturn. However the? only experimcnt 

that has been explicitly designed to test an optimization theory is that 

by Dear, Silberman, Estavan, and Atkirison ( l y b j ) ,  altholA& 111 the c-asc oi' 

response-insensitive theories, it is O f t ? K l  possible to f i n d  experiments in 

the psychological literature which p~ovide iridirect sclpport 

The experiment reported by Dear et al, was concerwd with testing 

the strategy proposed by Karush arid Dcar ( l y b b )  for Ilie case outlined in 

the preceding section. The major modif'iI,atiori ot' t h i s  strategy was to 
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p r o h i b i t  repeated p resen ta t ions  of t he  same i tem by forc ing  separa t ions  

of s e v e r a l  t r i a l s  between p resen ta t ions  of i n d i v i d u a l  i tems 83 

j e c t  was presented with two s e t s  of pa i r ed -as soc ia t e  i t ems ,  The f i r s t  s e t  

of i tems was presented accordihg t o  the opt imiza t ion  algori thm, 

the second s e t  were presented an equal  number of times i n  a s u i t a b l e  random 

orde r .  (It w i l l  be r e c a l l e d  t h a t  t h i s  s t r a t e g y  i s  optimal i f  the  l i n e a r  

model i s  assumed.) 

r a t e  of l ea rn ing )  tended t o  favor icems i n  the  f i rs t  s e t ,  no s i g n i f i c a n t  

d i f f e r e n c e  was found i n  pos th t e s t  scores  between items of the t w o  s e t s .  

Each sub- 

Items i n  

It was found that  while the  a c q u i s i t i o n  data ( e .g . ,  

It fol lows ffom t h e  r e s u l t  of t h i s  experiment t h a t ,  even for  a simple 

problem such a s  t h i s ,  an opt imizat ion theory i s  needed tha t  assumes a 

more complicated l ea rn ing  model. 

i n  simple pa i r ed -as soc ia t e  experiments t h a t  r e s u l t  i n  data which i s  f i t t e d  

by t h e  one-element model, any systematic  e f f e c t s  of s t imulus-presenta t ion  

sequences a r e  u s u a l l y  e l iminated by present ing  d i f f e r e n t  sub jec t s  wi th  

d i f f e r e n t  random sequences of s t i m u l i .  

i t  may be the case tha t  e i t h e r  the assumption of a f o r g e t t i n g  process o r  

of some short- term memory s t a t e  becomes important i n  accounting f o r  the 

data (Atkinson and S h i f f r i n ,  1965). 

A t  l e a s t  one reason f o r  t h i s  i s  t h a t ,  

When a s p e c i f i c  s t r a t e g y  i s  used,  

Unfortunately,  t h e  a n a l y t i c  s tudy of t h e  opt imiza t ion  p rope r t f e s  of 

more complex models, a t  l e a s t  by dynamic programming techniques,  i s  

d i f f i c u l t .  

a r e s u l t  of Karush and Dear (1965) which shows t h a t  t he  opt imal  s t r a t e g y  

f o r  the  one-element model i s  a l s o  optimal i f  i t  i s  assumed t h a t  t h e  

p r o b a b i l i t y  of a c o r r e c t  response i n  the  condi t ioned s t a t e  L i s  l e s s  than 

one.  However, there  a re  ways by means of which good approximations t o  

The only major extension of response-sexisit ive models has been 
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optimal  s t r a t e g i e s  might be achieved, even i n  the case of extremely com- 

p l ex  models a 

c r i t i c a l l y  concerned about solving f o r  an opt imal  procedure,  b u t  would 

i n s t e a d  be w i l l i n g  t o  use an e a s i l y  determined procedure t h a t  c l o s e l y  

approximates t h e  r e t u r n  of the optimum procedure.  

achieving a good approximation i s  by analyzing the problem numerical ly ,  

computing the optimal s t r a t e g y  f o r  a l a rge  number of s p e c i a l  c a s e s ,  

u s e f u l  gene ra l  algorithm for doing t h i s  i s  the backward induc t ion  procedure 

descr ibed i n  the preceding s e c t i o n .  Table 1 i l l i J s t r a t e s  how t h i s  algorithm 

can be used t o  f i n d  an opt imal  s t r a t e g y  f o r  one p a r t i c u l a r  ca se .  Dear 

(1964) d i scusses  the  use of t h i s  a lgori thm i n  o t h e r  r e sponse - insens i t fve  

problems 

Moreover, i n  many p r a c t i c a l  a p p l i c a t i o n s ,  one i s  not r e a l l y  

The main means of 

A 

The chief disadvantage of t he  backward induc t ion  algori thm i s  t h a t  

i t  can on ly  be used f o r  opt imal  s t r a t z g y  problems involving a f a i r l y  small  

number of s t a g e s ,  Although i t s  use can e l imina te  t h e  need to search every 

branch of a t r e e ,  the computation time s t , i l L  i n c r e a s e s  a s  a func t ion  of 

the number of poss ib l e  f i n a l  s t a t z s  Lhat can r e s J l t  Yrom a given i a i t i a l  

s t a t e .  However, a backward induct ion s o l u t i o n  f o r  even a small number of 

s t a g e s  would provide a l o c a l l y  opt imal  p o l i c y  f o r  a process  wi th  a l a r g e  

number of s t a g e s ,  and t h i s  l o c a l l y  optlmal s t r a t e g y  might provide a good 

approximation t o  an opt imal  s t r a t e g y .  

t i o n  such a s t r a t e g y  provided, i t s  r e t u r n  could be eva lua ted  and t h i s  

could be compared with the r e t u r n s  of a lLe rna t ive  s t r a t e g i e s ,  

To decide how "good" an approxima- 
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Footnotes 

1. Support f o r  t h i s  research  was provideci by the  Nntionnlkeronaut ic : :  

and Space Adminis t ra t ion,  Grant No. NGR-05-020-036, an;l by t h e  Of f i ce  oi' 

Education, Grant No. OE5-10-C?50. 

2 .  Here the term N - t r i a l  expel-iment r e f e r s  t o  an a n t i c i p n t o r y  

pa i red-assoc ia te  proceciure which involvez N s t imulus p re sen t3 t ions .  Tc, 

each stimulus p re sen ta t ion  the sub jec t  makes a response and then i s  told 

the  c o r r e c t  answer f o r  t h a t  s t imulus .  

2. Thi:: noc i i ' i ca t ion  was necescory bcc:au;:e i t  has been sho-;:n c:.:;,el:i- 

mental ly  t h a t  i f '  t h e  same i tern i s  pre::ented on immeiiiately L;uc:c:c-sive 

tr ia1.s then the :;ubjcc.t ' G responze i s  a f f ec t ed  by cLnsiciei,aLiun; of shor'k- 

ter':: inencry. 


